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The skyrocketing price of precious metals and their recognized
toxicity pose a question of finding cheaper and environmentally
benign alternatives for applications in catalysisThe abundant

and nontoxic iron is particularly attractive to serve as a “cheap metal

for a noble task such as hydrosilatiohThough Cp(OC)-eSiMeg
was the first transition metal silyl compléxand some iron
hydrosilation catalysts are availaBlérelatively little is known
about iron hydrido silyl complexés? All Fe(ll) derivatives appear

to be classical silyl hydridesé whereas formally Fe(,Fe(lll),°

and many Fe(IV) complexes are in fagtHSiR;!%11 or %3-H,SiR,
silane o-complexes:12 Although X-ray study of formally Fe(IV)
complexes (arene)FetBiXs), (X = F, Cl) suggested their classical
structured,a recent DFT study of the isoelectronic rhodium deriva-
tive CpRhH(SiMe;), revealed the presence of significant-$i
interactions:® The related half-sandwiches Cp(OC)FeH(9h*
long believed to be classical Fe(IV) specteactually have highly
delocalized St+H-+-Si bonding1¢16 Assuming that electron donat-
ing ligands could stabilize an Fe(lV) center, we targeted the
preparation of the so far unknown class of dihydride silyl complexes
Cp(R3P)FeH(SiRs). Their X-ray and DFT studies provide evidence
for a novel H--SiRs:+H bonding and reveal an unusual mode of
silane Si-H activatior? on the Cp(RP)FeH moiety.

The treatment of [Cp(BMeP)Fe(NCCH) T [BF4~ (1) with
NaBH, in THF affords a highly unstable complex CpgRteP)-
Fe(BH,) (2), which is a rare example of an iron borohydridé®
Reactions of théreshlyprepared with silanes in the presence of
NEt; afford the dihydride silyl derivatives3a—f unavailable
previously (Scheme 1). Complek catalyzes hydrosilation of
benzaldehyde by $$iPh (5% load, 3h, 22C), whereas catalysis
by 3b requires heating at 5€C (H,SiMePh, 5% load o8b, 12 h).

In contrast, bulkier comple8a is inactive.

The compound8 were isolated in the form of yellow 0ils3b,

c) or crystals 8a, d—f) and studied by spectroscopic methods and
X-ray analysis of3e and 3f. In the 'TH NMR spectrum of3f, the
equivalent hydrides give rise to a doublet£13.93 ppm J(P—H)

= 25 Hz) flanked by°Si satellites. Thé%Si NMR displays a doublet

of triplets at—13.8 ppm, J(P—Si) = 14.5 Hz,J(H—Si) = 18.9
Hz), a pattern that does not change upon cooling8® °C. This

can be consistent, in principle, both with a static structure and with
a very fast degenerate exchange between two forms of a silan
hydride complex: Cp(L)Fet{n2-HSiRs) == Cp(L)Fef?>-H*SiRs)-

HA. Such an exchange was originally postulated for relatet? Rh
and R@° complexes but was later ruled out for the former on the
basis of DFT calculation®.

The X-ray structures deand3f (Figure 1) suggest the presence
of double Si--H interactions. Comple8f has a remarkably short
Fe—Si bond of 2.168(1) A, which is much shorter than the-B&
distances in the closely related compoung§-QsHsMe)Feh-
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Scheme 1. Preparation of Dihydrido Silyl Complexes 3a—f
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(SiCly),™ (2.220(2) A) and Cp(OC)FeH(Sigh!4" (2.252(3) A) and
is comparable to the FeSi double bond in the silylene derivative
Cp*(OC)FeESiMes)(SiMes) (2.154(1) A)2L A similar situation
has been previously observed for #fesilane complex [PhB(CHP-
Pry)slFeH@;3-H,SiMePh)2in which a short Fe Si bond of 2.1280-
(7) A is an inevitable consequence of two—$i bonds being
simultaneously coordinated to the iron cerfter.

Additional evidence for the occurrence of two interliganet Si
H interactions irBf comes from the observation of two sets of Si
Cl bonds: those two lyindrans to the hydrides (the HSi—ClI
bond angle of 1537 are noticeably longer than the uniquis
Si—Cl bond (2.1125(9) vs 2.0835(14) A = 0.0290(17) A3 In
contrast, in related complexes Cp(OC)FeH(9and ¢°-CsHe)-
FeH,(SiCls), both Si—Cl bonds are short and almost identical
(2.048-2.061(4) A and 2.0722.079(2) A). Finally, two hydrides,
strongly tilted toward the silyl group to make a+t$i distance of
1.88(3) A, were observed. Compared with the accurate ND values
for terminal Fe-H bonds (1.526(12)1.609(2) A)24 the Fe-H
distance of 1.35(3) A is obviously subject to a systematic
foreshortening, pertinent to the X-ray diffraction mett#®dow-
ever, estimation shows that elongation of the-Febond to 1.6 A
would result in an increase of the-Si distance only to 1.93 A.

DFT calculations revealed unusual features of silafie 5iMe;
addition to Cp(MeP)FeH? Activation proceeds without barrier and
starts at an FeSi separation of about 3.0 A by the formation of
annt-silaneo-complex characterized by the +&l® bond of 1.692
A (Mayer index (MI) of 0.37) and the SiH® bond of 1.641 A
(J(H3—=Si) = —115.9 Hz, MI= 0.52). At an Fe-Si distance of
2.65 A, the Si-H2 bond is significantly weakened (1.930 KH3—

Si) = —51.7 Hz, MI= 0.39) but the St-H? interaction starts to
build up. At about this point, the sign dfH?>—Si) turns negativ&
(—0.7 Hz) and a significant value of the Ml is achieved (0.11).
The equilibrium structurd shows the presence tfo simultaneous
and equialent Si--H interactiors characterized by the -SH
distances b2 A and increased Mls of 0.18 (Table 1).

Double Si~H bonding has precedents in the SISH#interac-
tions between a hydride angd-silane ligands, in which two SiH
interactions are not equivalent. The most remarkable new feature
of theequivalent Si-H interactions in complexe®is that the extent

10.1021/ja800983n CCC: $40.75 © 2008 American Chemical Society
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Figure 1. Molecular structures (bond lengths in A) of compouBésand
3f (local Cs symmetry; only one rotamer of the disordered goup is
shown). Hydrogen atoms apart from hydrides are omit®al. Fe—Si
2.1948(6), FetP1 2.2089(6), FetH1 1.37(2), FetH2 1.43(2), Sit
H1 1.90(2), Sit-H2 1.91(2), Si+-CI1 2.1355(7), Si+CI2 2.1378(7).3f:
Fe—Si 2.168(1), FetP1 2.2165(9), FeH 1.35(3), Sit-H1 1.88(3), Sit-
Cl1 2.0835(14), Si+Cl2 2.1125(9).

Table 1. Calculated Bond Lengths (in A)/Mayer Bond Indices and
Si—H Coupling Constants (in Hz) for the Most Stable Isomers of
4-7

bond 42 5b 6° 72
Fe-Si 2.320/0.74 2.262/0.79 2.222/0.81 2.194/0.89
Fe—H? 1.513/0.70 1.507/0.70 1.508/0.69 1.512/0.70
Fe—H3 1.511/0.70 1.507/0.70 1.514/0.70 1.512/0.70
Si—H2 2.000/0.18 2.007/0.16 1.994/0.18 1.995/0.17
Si—H3 1.984/0.18 2.007/0.16 1.991/0.17 1.995/0.17
Si—CI(t) - - 2.152/0.84 2.122/0.87
Si—Cl(c) - 2.171/0.82 2.146/0.83 2.126/0.85
JSi—H?) —-235 —22.9 —42.4 -10.1
JSi—H%) —24.3 —22.9 +1.3 -10.1
Javd —23.9(21.6) —20.3(21.9) —17.3(19.2) —10.1(18.9)

a Cs structure? Cs structure with the Cl groupis to hydridesg CI(c) is
cisto hydrides, CI(t) igransto H3. 9 Weighted according to the Boltzmann
population of three rotamers at 298 K, experimental data in parentheses.

of bonding does not depend on the substitution at Si (Table 1) and
the orientation of the silyl groud. In the related silane-com-
plexes'tand complexes with interligand hypervalent interactions
(IH1),11d electron-withdrawing groups on Si tend to weaken the
Si—H bonding, which is not the case for model complexes
Cp(MeP)FeH(SiMe;_Cly) (n = 0—4,4—7). The IHI additionally
requires the presence of an accepting grovapsto the hydride,
but the data of Table 1 show that such a stereochemical condition
does not hold fod—7. And in fact rotamer&a,b?” have the longest
Si—H bond to the hydride that igsansto the Cl substituent.
Calculation of significant attractive values of Mayer diatomic
energie® (range from—40.4 to—44.6 kcalmol~1) unambiguously
proves the existence of ‘SiH interactions ind—7. A large propor-
tion of this energy results from the interatomic exchange, indicating
that this Si--H attraction has a substantial covalent character.
Another unusual feature of the multicentral bonding3i7 is
that substitution at silicon does not affect the valueJ@i—H).
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